US009172962B2

a2z United States Patent (10) Patent No.: US 9,172,962 B2
Nguyen et al. @45) Date of Patent: Oct. 27, 2015
(54) METHODS AND SYSTEMS FOR PIPELINING 2013/0114698 Al* 5/2013 Louetal. ............. 375/240.03
WITHIN BINARY ARITHMETIC CODING 20130188735 AL+ 72013 Newenetal 1 3732402
guyen et al. .. .
AND DECODING 2013/0188736 Al* 7/2013 Kimetal. ....... 375/240.25
2013/0322547 Al* 12/2013 Louetal. ..o 375/240.24
(75) Inventors: Nguyen Nguyen, Waterloo (CA);
Tianying Ji, Waterloo (CA); Dake He,
Waterloo (CA) OTHER PUBLICATIONS
. ] L. . EPO, Extended European Search Report relating to application No.
(73) Assignee: BclzckBerry Limited, Waterloo, Ontario 12151970, dated Jul. 9, 2012.
(€A) Maniccam S S et al., “Lossless Compression and Information Hiding
( ® ) Notice: Subject to any disclaimer, the term of this in Images”, Pattern Recognition, Elsevier, GB, vol. 37, No. 3, Mar. 1,
tent i tended diusted under 35 2004, XP004478997.
%ase Ié lls SZ)((bE):I}:) eS 601r dz Jsus ed under Rosewarne C et al., “Non-Cell: Modified Context Selection for Sig-
T y ys. nificant Coefficient Flags with Diagonal Sub-block Scan”, 7. JCT-
. VC Meeting: 98. MPEG Meeting; Nov. 21, 2011-Nov. 30, 2011;
(21)  Appl. No.: 13/354,437 Geneva; (Joint Collaborative Team on Video Coding of ISO/IEC
_ JTC1/SC29/WG11 and ITU-T SG.16); URL: http://witp3.itu.int/av-
(22) Filed: Jan. 20, 2012 archjctve-site/,, No. JCTVC-G958, Nov. 18, 2011.
(65) Prior Publication Data (Continued)
US 2013/0188724 Al Jul. 25,2013
(51) Int.CL Primary Examiner — David Czekaj
HO04N 11/02 (2006.01) Assistant Examiner — Tyler W Sullivan
gzjg ;/9 6/‘;29 88(1)‘6‘88 (74) Attorney, Agent, or Firm — Rowand LLP
HO04N 19/91 (2014.01)
HO4N 19/176 (2014.01) (57) ABSTRACT
HO04N 19/51 (2014.01)
HO4N 19/593 (2014.01) Methods of encoding and decoding for video data are
(52) US.CL described for encoding or decoding multi-level significance
CPC ......... HO4N 19/129 (2014.11); HO4N 19/176 maps while enabling pipelining of the BAC engine. In one
(2014.11); HO4N 19/51 (2014.11); HO4N 19/91 example, coefficient groups are redefined to remove the sig-
(2014.11); HO4N 19/593 (2014.11) nificant-coefficient flags of the first and last position of a
(58) Field of Classification Search block and replace them with significant-coefficient flags of
cpPC combigation set(s) only. ) the last position in the previous block and the first position in
See application file for complete search history. the next block. A modified scan order is applied to each
. coefficient group. In another example, the coefficient groups
(56) References Cited remain block-based, but the scan order is modified to inter-

U.S. PATENT DOCUMENTS

5,613,091 A * 3/1997 Stoneetal. .......c........ 711/171
2008/0219578 Al*  9/2008 Lee 382/247
2012/0183235 Al* 7/2012 Sasaietal. ................. 382/233

xC

0 123 456789101112<131415

202

leave the encoding and decoding sequential coefficient
groups.

21 Claims, 12 Drawing Sheets

208

200

yC




US 9,172,962 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Sole I: “Cross-check of RIM’s Multi-Level Significant Maps for
Large Transform Units (JCTVC-G644)”, 7. JCT-VC Meeting; 98.
MPEG Meeting; Nov. 21, 2011-Nov. 30, 2011; Geneva, (Joint Col-
laborative Team on Video Coding of ISO/IEC JTC1/SC29/WG11
and ITU-T SG.16); URL: http://wftp3.itu.int/av-arch/jctve-site/,,
No. JCTVC-G1001, Nov. 24, 2011, XP030110985.

USTPO, US Office Action relating to U.S. Appl. No. 13/354,448,
dated May 28, 2014.

Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary
arithmetic coding in the h.264/AVC video compression standard,”
IEEE Transactions on Circuits and Systems for Video Technology,
13(7):620-636, Jul. 2003.

B. Bross, W-J Han, J-R Ohm, G. J. Sullivan, and T. Wiegand, “WD4:
Working Draft 4 of High-Efficiency Video Coding,” JCT-VC of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 6th Meeting,
Torino, Jul. 2011.

F. Bossen, “Common test conditions and software reference configu-
rations”, JCTVC-F900, JCT-VC of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WGl1, 6th Meeting, Torino, Jul. 2011.

T.Nguyen, T. Winken, D. Marpe et al., “Reduced-complexity entropy
coding of transform coefficient levels using a combination of VLC

and PIPE”, JCTVC-D336, JCT-VC of ITU-T SG16 WP3 and ISO/
IEC JTC1/SC29/WG11, 4th Meeting, Daegu, Jan. 2011.

J. Sole, R. Joshi, M. Karczewicz, “Non-CE11: Diagonal sub-block
scan for HE residual coding”, JCT-VC of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WGl1, 7th Meeting, Geneva, Nov. 2011.

B. Bross, W-J Han, J-R Ohm, G. J. Sullivan, and T. Wiegand, “WDS5:
Working Draft 4 of High-Efficiency Video Coding,” JCTVC-
G1103_d4, JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/
WGL1, 7th Meeting, Geneva, Nov. 2011.

N. Nguyen, T. Ji, D. He, G. Martin-Cocher and L. Song, “Multiple
Level Significance Maps for Large Transform Units”, JCT-VC of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 7th Meeting,
Geneva, Nov. 2011.

Joel Sole, Rajan Joshi, Maria Karczewicz, JCTVC-G323, “Non-
CE11: Diagonal sub-block scan for HE residual coding”, Joint Col-
laborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/WG11 7th Meeting: Geneva, CH, Nov.
21-30, 2011.

V. Sze, “On Significance Map Coding in CABAC”, JCT-VC of ITU-T
SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 7th Meeting, Geneva,
Nov. 2011.

M. Karczewicz, I. Chung, X. Wang and R. Joshi, “Study of Entropy
Coding Methods Complexity”, JCT-VC of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WGl1, 7th Meeting, Geneva, Nov. 2011.

* cited by examiner



U.S. Patent Oct. 27, 2015 Sheet 1 of 12 US 9,172,962 B2

10

21
24
12 / [22 K ( 26 14

Spatial > Transform > . Entropy
Predictor Processor Quantizer Coder

28— | Dequantizer

v

Inverse Transform
20 Processor

Coding Mode
Selector
32
36 34\ Deblocking Processor /
Motion
i predictor -} Frame Store

FIG.1



U.S. Patent Oct. 27, 2015 Sheet 2 of 12 US 9,172,962 B2

50

58

P Frame Buffer | «ff—

v

] Motion
Compensator

62

54 56

57
. [ L
Inverse
Entropy > . > > Spatial > (‘!5 > Deblocking
Decoder Dequantizer Transform Compensator Processor ! ’

Processor

K ) j 16

52




U.S. Patent Oct. 27, 2015 Sheet 3 of 12 US 9,172,962 B2

xC
0 123 456 7 8 9 10 11 12 13 14 15 100
0
A /
: M2
} f
2 ] ) I
3 -
4 | // A // A //
5 1| M 1] v, N, %
,I ',}/ ',;/
S [t [ |
7 7
Ve |
% / ”
e 8 |x b/ Ay 7
9 L i ! ¢
A AT A
10 / ! /4' // |
11 . | A ¥ L8
12| £ d .2
13 ] lﬁ ]
] L L
14
15




U.S. Patent

yC

O 0 N O 1 AW N RO

R e el e
Uk W N RO

0

Oct. 27, 2015

1

2

3

4 5 6 7 8 9 10 11 12 13 14 15

Sheet 4 of 12

xC

10

15

12

13

US 9,172,962 B2

110



U.S. Patent

yC

O 00 N O b W N =R O

Oct. 27, 2015

2

3

4 5 6 7 8

Sheet 5 of 12

xC

10 11 12 13 14 15

D

15

12

FIG. 5

US 9,172,962 B2

110



US 9,172,962 B2

Sheet 6 of 12

Oct. 27, 2015

U.S. Patent

12"

[stfvr]er| e1e Jz]1]o

stfvrfer] zme [z]1]o

st|vrfer] ze Jz]1]o]

[stfvr]er| ez1e Jz]1]o0

stfvtfer]| zme [z]1]o

st|vtfer] ze Je]1]of

91T




U.S. Patent Oct. 27, 2015 Sheet 7 of 12 US 9,172,962 B2

xC 202 208
0 1 2 3 45678<9101112<‘31415 200
o J
1
2
3
4
5
) 201 204
7
yC 8 216
9
10 P31
11 ’ | 210
12
13
14
15

214

my
3
~



U.S. Patent

Oct. 27, 2015

Sheet 8 of 12

US 9,172,962 B2

302 —

Decode or infer significant-
coefficient-group flag for
nextCG

!

304

Decode or infer significant-
coefficient flags at positions 3 to
12 of current CG

Y

306

Decode or infer significant-
coefficient flags at position 0 of
next CG

!

300

308~ | Decode or infer significant-
coefficient flags at positions 13
and 14 of current CG
3107 I Decode or infer significant-
coefficient flags at positions 1
and 2 of next CG
312" Y Decode or infer significant-
coefficient flags at position 15 of
current CG
314
No- | current cG >
next CG
Yes )
318~ | Decode or infer significant- 316

coefficient flags at positions 3 to
15 of next CG

End



US 9,172,962 B2

U.S. Patent Oct. 27,2015 Sheet 9 of 12
402 Decode or infer significant-
coefficient flags of current CG  j«—— 400

up to position12

!

410

(

1/‘%/

Decode significant-coefficient-
group flag for nextCG

nextCG++

f

Set all significant-
coefficient flags in
nextCG =0

408 /

406

nextCG significant-
coefficient-group

P
412

Decode or infer significant-coefficient

flags at position 0 of nextCG

v

414

Decode or infer significant-
coefficient flags at positions 13
and 14 of current CG

!

416

Decode or infer significant-
coefficient flags at positions 1
and 2 of nextCG

Y

Decode or infer significant-
coefficient flags at position 15 of
current CG

418
424

~

Decode or infer
remaining
positions 3 to 15
in nextCG

420

Yes No

Current CG >
next CG

422 /



U.S. Patent

yC

O W N O U1 o W N B O

e el ol e
i B W N P O

Oct. 27, 2015 Sheet 10 of 12 US 9,172,962 B2
xC
0 123 456 7 8 910 1112 13 14 15
ojlojo|o
452 o|lo|o0]|o0
olo| o] o0
ojolof|of|o
o(o|0o]|0]15|13
0(0|0)|0]14
ojo|o0|o0 250
olo0)0fo0

FIG. 10



U.S. Patent Oct. 27, 2015 Sheet 11 of 12 US 9,172,962 B2

900

/ / 904

Encoder /
Processor Memory
902

906
( Encoding Application ) /
M1
Communications

System . J

>

FIG. 11



U.S. Patent

Oct. 27, 2015 Sheet 12 of 12 US 9,172,962 B2

1000

/ / 1004

Encoder /
Processor Memory
1002
1006
( Decoding Application ) /
]
Communications

System \. J/

P

FIG. 12



US 9,172,962 B2

1
METHODS AND SYSTEMS FOR PIPELINING
WITHIN BINARY ARITHMETIC CODING
AND DECODING

COPYRIGHT NOTICE

A portion of the disclosure of this document and accom-
panying materials contains material to which a claim for
copyright is made. The copyright owner has no objection to
the facsimile reproduction by anyone of the patent document
or the patent disclosure, as it appears in the Patent and Trade-
mark Office files or records, but reserves all other copyright
rights whatsoever.

FIELD

The present application generally relates to data compres-
sion and, in particular, to methods and devices for encoding
and decoding video using significance maps.

BACKGROUND

Data compression occurs in a number of contexts. It is very
commonly used in communications and computer network-
ing to store, transmit, and reproduce information efficiently. It
finds particular application in the encoding of images, audio
and video. Video presents a significant challenge to data
compression because of the large amount of data required for
each video frame and the speed with which encoding and
decoding often needs to occur. The current state-of-the-art for
video encoding is the ITU-T H.264/AVC video coding stan-
dard. It defines a number of different profiles for different
applications, including the Main profile, Baseline profile and
others. A next-generation video encoding standard is cur-
rently under development through a joint initiative of MPEG-
ITU: High Efficiency Video Coding (HEVC).

There are a number of standards for encoding/decoding
images and videos, including H.264, that use block-based
coding processes. In these processes, the image or frame is
divided into blocks, typically 4x4 or 8x8, and the blocks are
spectrally transformed into coefficients, quantized, and
entropy encoded. In many cases, the data being transformed is
not the actual pixel data, but is residual data following a
prediction operation. Predictions can be intra-frame, i.e.
block-to-block within the frame/image, or inter-frame, i.e.
between frames (also called motion prediction). It is expected
that HEVC will also have these features.

When spectrally transforming residual data, many ofthese
standards prescribe the use of a discrete cosine transform
(DCT) or some variant thereon. The resulting DCT coeffi-
cients are then quantized using a quantizer to produce quan-
tized transform domain coefficients, or indices.

The block or matrix of quantized transform domain coet-
ficients (sometimes referred to as a “transform unit”) is then
entropy encoded using a particular context model. In H.264/
AVC and in the current development work for HEVC, the
quantized transform coefficients are encoded by (a) encoding
alast significant coefficient position indicating the location of
the last non-zero coefficient in the block, (b) encoding a
significance map indicating the positions in the block (other
than the last significant coefficient position) that contain non-
zero coefficients, (¢) encoding the magnitudes of the non-zero
coefficients, and (d) encoding the signs of the non-zero coef-
ficients. This encoding of the quantized transform coeffi-
cients often occupies 30-80% of the encoded data in the
bitstream.

10

15

20

25

30

35

40

45

50

55

60

65

2

Transform units are typically NxN. Common sizes include
4x4, 8x8, 16x16, and 32x32, although other sizes are pos-
sible, including non-square sizes in some embodiments, such
as 8x32 or 32x8. The entropy encoding of the symbols in the
significance map is based upon a context model. In the case of
4x4 or 8x8 luma or chroma blocks or transform units (TU), a
separate context is associated with each coefficient position in
the TU. The encoder and decoder must keep track of and look
up a large number of different contexts during the encoding
and decoding of the significance map. In the case of larger
TUs, the context for encoding a significant flag may depend
on the values of neighbouring significance flags. For
example, the flag may have a context selected from four or
five contexts depending on the values of neighbouring flags.
In some instances, particular flags within a TU or sub-block of
a TU may have a context based on position, such as the
upper-left (DC) position.

The determination of context for the 16x16 and 32x32
significance maps is fairly computationally intense, because
in most cases the processor determines context by looking at
the values of neighboring significant flags, which involves
costly memory access operations.

A binary arithmetic coding (BAC) engine has three stages:
context determination or derivation, binary arithmetic coding
(encoding or decoding), and probability estimate update. A
non-pipelined BAC engine processes a binary symbol by
completing all three stages before starting on the next symbol.
A pipelined BAC engine attempts to start the next symbol
before the current symbol has completed processing through
all three stages.

Because context for a significant-coefficient flag is deter-
mined by the values of neighboring flags, the processing of a
neighboring flag must be completed before it is used to deter-
mine context of a current flag, since its processing can impact
the probability estimate for a particular context. Thus, it is
difficult to maximize throughput per cycle when working
with larger significance maps. Attempts to pipeline within the
BAC engine can run into stalls.

BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made, by way of example, to the
accompanying drawings which show example embodiments
of the present application, and in which:

FIG. 1 shows, in block diagram form, an encoder for
encoding video;

FIG. 2 shows, in block diagram form, a decoder for decod-
ing video;

FIG. 3 shows, an example of a multi-level scan order for a
16x16 transform unit;

FIG. 4 shows an example illustration of one implementa-
tion of a modified scan order through a redefinition of the
coefficient group shape;

FIG. 5 shows the transform unit of FIG. 4 with three coef-
ficient groups illustrated;

FIG. 6 illustrates a mapping of the block-based diagonal
scan order of FIG. 3 to the modified scan order;

FIG. 7 diagrammatically illustrates a transform unit with
the redefined coefficient groups;

FIG. 8 shows, in flowchart form, an example embodiment
of'a process for reconstructing significant-coefficient flags;

FIG. 9 shows, in flowchart form, another example embodi-
ment of a process for reconstructing significant-coefficient
flags;

FIG. 10 shows a special case to be handled in at least one
embodiment of the process for reconstructing significant-
coefficient flags; and



US 9,172,962 B2

3

FIG. 11 shows a simplified block diagram of an example
embodiment of an encoder; and

FIG. 12 shows a simplified block diagram of an example
embodiment of a decoder.

Similar reference numerals may have been used in differ-
ent figures to denote similar components.

DESCRIPTION OF EXAMPLE EMBODIMENTS

The present application describes methods and encoders/
decoders for encoding and decoding significance maps with
context-adaptive encoding or decoding. The encoder and
decoder use multi-level significance maps. In at least one
case, the multi-level maps are used with larger transform
units, such as the 16x16 and 32x32 TUs.

In one aspect, the present application describes a method of
decoding a bitstream of encoded video by reconstructing
significant-coefficient flags for a transform unit, the trans-
form unit comprising a sequence of blocks, the bitstream
including sets of significant-coefficient flags, each set corre-
sponding to a respective block, wherein the sets in the bit-
stream are ordered according to the sequence, the bitstream
encoding the significant-coefficient flags of each set in a scan
order. The method including, for a current one of the sets of
significant-coefficient flags, decoding that current set in the
scan order, wherein the scan order is a block-based diagonal
scan modified to advance decoding of a significant-coeffi-
cient flag in a first position within the block corresponding to
the current set to occur prior to decoding at least two signifi-
cant-coefficient flags of a previous set in the sequence, and
modified to delay decoding of a significant-coefficient flag in
a last position within that block to occur after decoding at
least two significant-coefficient flags in a subsequent set in
the sequence.

In another aspect, the present application describes a
method of decoding a bitstream of encoded video by recon-
structing significant-coefficient flags for a transform unit, the
transform unit comprising a sequence of blocks, the bitstream
including sets of significant-coefficient flags, each set corre-
sponding to a respective block, the bitstream sequencing the
sets according to the order of their corresponding blocks, the
bitstream encoding the significant-coefficient flags of each
set in a scan order. The method includes, for each set of
significant-coefficient flags, decoding that set in the scan
order, wherein the scan order is a modification of a block-
based diagonal scan, modified to exclude a first location
within the block corresponding to the set and a last location
within that block and modified to include a last location in a
previous block and a first location in a next block, and
wherein the locations are relative to the block-based diagonal
scan.

In another aspect, the present application describes a
method of decoding a bitstream of encoded video by recon-
structing significant-coefficient flags for a transform unit, the
transform unit comprising a sequence of blocks, the bitstream
encoding sets of significant-coefficient flags, each set corre-
sponding to a respective block. The method includes, for each
set of significant-coefficient flags, decoding that set in a scan
order, wherein the scan order is a diagonal scan within its
respective block modified so as to decode a significant-coef-
ficient flag in the bottom-right position within the respective
block corresponding to the set, prior to decoding at least two
significant-coefficient flags of a previous set in the sequence,
and to decode a significant-coefficient flag in the upper-left
position within that respective block, after decoding at least
two significant-coefficient flags of a subsequent set in the
sequence.

15

30

40

45

4

In yet another aspect, the present application describes a
method of decoding a bitstream of encoded video by recon-
structing significant-coefficient flags for a transform unit, the
transform unit comprising a sequence of blocks, the bitstream
including sets of significant-coefficient flags, each set corre-
sponding to a respective block, the bitstream sequencing the
sets according to the order of their corresponding blocks, and
the bitstream encoding the significant-coefficient flags of
each set in a scan order. The method includes, for each set of
significant-coefficient flags, decoding that set in the scan
order, wherein the scan order is a modification of a block-
based diagonal scan, modified to exclude a bottom-right posi-
tion within the block corresponding to the set and an upper-
left position within that block and modified to include an
upper-left location in a previous block and a bottom-right
location in a next block.

Ina further aspect, the present application describes encod-
ers and decoders configured to implement such methods of
encoding and decoding.

In yet a further aspect, the present application describes
non-transitory computer-readable media storing computer-
executable program instructions which, when executed, con-
figured a processor to perform the described methods of
encoding and/or decoding.

Other aspects and features of the present application will
be understood by those of ordinary skill in the art from a
review of the following description of examples in conjunc-
tion with the accompanying figures.

In the description that follows, some example embodi-
ments are described with reference to the H.264 standard for
video coding and/or the developing HEVC standard. Those
ordinarily skilled in the art will understand that the present
application is not limited to H.264/AVC or HEVC but may be
applicable to other video coding/decoding standards, includ-
ing possible future standards, multi-view coding standards,
scalable video coding standards, and reconfigurable video
coding standards.

In the description that follows, when referring to video or
images the terms frame, picture, slice, tile and rectangular
slice group may be used somewhat interchangeably. Those of
skill in the art will appreciate that, in the case of the H.264
standard, a frame may contain one or more slices. It will also
be appreciated that certain encoding/decoding operations are
performed on a frame-by-frame basis, some are performed on
a slice-by-slice basis, some picture-by-picture, some tile-by-
tile, and some by rectangular slice group, depending on the
particular requirements or terminology of the applicable
image or video coding standard. In any particular embodi-
ment, the applicable image or video coding standard may
determine whether the operations described below are per-
formed in connection with frames and/or slices and/or pic-
tures and/or tiles and/or rectangular slice groups, as the case
may be. Accordingly, those ordinarily skilled in the art will
understand, in light of the present disclosure, whether par-
ticular operations or processes described herein and particu-
lar references to frames, slices, pictures, tiles, rectangular
slice groups are applicable to frames, slices, pictures, tiles,
rectangular slice groups, or some or all of those for a given
embodiment. This also applies to transform units, coding
units, groups of coding units, etc., as will become apparent in
light of the description below.

The present application describes example processes and
devices for encoding and decoding significance maps. A sig-
nificance map is a block, matrix or group of flags that maps to,
or corresponds to, a transform unit or a defined unit of coef-
ficients (e.g. several transform units, a portion of a transform
unit, or a coding unit). Each flag indicates whether the corre-



US 9,172,962 B2

5

sponding position in the transform unit or the specified unit
contains a non-zero coefficient or not. In existing standards,
these flags may be referred to as significant-coefficient flags.
In existing standards, there is one flag per coefficient and the
flag is a bit that is zero if the corresponding coefficient is zero
and is set to one if the corresponding coefficient is non-zero.
The term “significance map” as used herein is intended to
refer to a matrix or ordered set of significant-coefficient flags
for a transform unit, as will be understood from the descrip-
tion below, or a defined unit of coefficients, which will be
clear from the context of the applications.

Although the examples described herein relate to signifi-
cance maps, the multi-level encoding and decoding processes
may be applied to other syntax elements in video coding, e.g.,
coefficient levels, filter coefficients, and motion vectors (after
binarization), which may exhibit group structures. For
example, a local group of coefficient levels might be all one
with high probability. Similarly, a local group of motion
vectors might be all zero in one direction (zero horizontal
movement for example), or a set of filter coefficients may be
all zero in neighboring frequency bands.

It will also be understood, in light of the following descrip-
tion, that the multi-level encoding and decoding structure
might be applied in certain situations, and those situations
may be determined from side information like video content
type (natural video or graphics as identified in sequence,
picture, or slice headers). For example, two levels may be
used for natural video, and three levels may be used for
graphics (which is typically much more sparse). Yet another
possibility is to provide a flag in one of the sequence, picture,
or slice headers to indicate whether the structure has one, two,
or three levels, thereby allowing the encoder the flexibility of
choosing the most appropriate structure for the present con-
tent. In another embodiment, the flag may represent a content
type, which would be associated with the number of levels.
For example, a content of type “graphic” may feature three
levels.

Reference is now made to FIG. 1, which shows, in block
diagram form, an encoder 10 for encoding video. Reference is
also made to FIG. 2, which shows a block diagram of a
decoder 50 for decoding video. It will be appreciated that the
encoder 10 and decoder 50 described herein may each be
implemented on an application-specific or general purpose
computing device, containing one or more processing ele-
ments and memory. The operations performed by the encoder
10 or decoder 50, as the case may be, may be implemented by
way of application-specific integrated circuit, for example, or
by way of stored program instructions executable by a general
purpose processor. The device may include additional soft-
ware, including, for example, an operating system for con-
trolling basic device functions. The range of devices and
platforms within which the encoder 10 or decoder 50 may be
implemented will be appreciated by those ordinarily skilled
in the art having regard to the following description.

The encoder 10 receives a video source 12 and produces an
encoded bitstream 14. The decoder 50 receives the encoded
bitstream 14 and outputs a decoded video frame 16. The
encoder 10 and decoder 50 may be configured to operate in
conformance with a number of video compression standards.
For example, the encoder 10 and decoder 50 may be H.264/
AVC compliant. In other embodiments, the encoder 10 and
decoder 50 may conform to other video compression stan-
dards, including evolutions of the H.264/AVC standard, like
HEVC.

The encoder 10 includes a spatial predictor 21, a coding
mode selector 20, transform processor 22, quantizer 24, and
entropy encoder 26. As will be appreciated by those ordi-

10

15

20

25

30

35

40

45

50

55

60

65

6

narily skilled in the art, the coding mode selector 20 deter-
mines the appropriate coding mode for the video source, for
example whether the subject frame/slice is of I, P, or B type,
and whether particular coding units (e.g. macroblocks, cod-
ing units, etc.) within the frame/slice are inter or intra coded.
The transform processor 22 performs a transform upon the
spatial domain data. In particular, the transform processor 22
applies a block-based transform to convert spatial domain
data to spectral components. For example, in many embodi-
ments a discrete cosine transform (DCT) is used. Other trans-
forms, such as a discrete sine transform or others may be used
in some instances. The block-based transform is performed
on a coding unit, macroblock or sub-block basis, depending
on the size of the macroblocks or coding units. In the H.264
standard, for example, a typical 16x16 macroblock contains
sixteen 4x4 transform blocks and the DCT process is per-
formed on the 4x4 blocks. In some cases, the transform
blocks may be 8x8, meaning there are four transform blocks
per macroblock. In yet other cases, the transform blocks may
be other sizes. In some cases, a 16x16 macroblock may
include a non-overlapping combination of 4x4 and 8x8 trans-
form blocks.

Applying the block-based transform to a block of pixel data
results in a set of transform domain coefficients. A “set” in
this context is an ordered set in which the coefficients have
coefficient positions. In some instances the set of transform
domain coefficients may be considered as a “block” or matrix
of coefficients. In the description herein the phrases a “set of
transform domain coefficients” or a “block of transform
domain coefficients” are used interchangeably and are meant
to indicate an ordered set of transform domain coefficients.

The set of transform domain coefficients is quantized by
the quantizer 24. The quantized coefficients and associated
information are then encoded by the entropy encoder 26.

The block or matrix of quantized transform domain coef-
ficients may be referred to herein as a “transform unit” (TU).
In some cases, the TU may be non-square, e.g. a non-square
quadrature transform (NSQT).

Intra-coded frames/slices (i.e. type I) are encoded without
reference to other frames/slices. In other words, they do not
employ temporal prediction. However intra-coded frames do
rely upon spatial prediction within the frame/slice, as illus-
trated in FIG. 1 by the spatial predictor 21. That is, when
encoding a particular block the data in the block may be
compared to the data of nearby pixels within blocks already
encoded for that frame/slice. Using a prediction algorithm,
the source data of the block may be converted to residual data.
The transform processor 22 then encodes the residual data.
H.264, for example, prescribes nine spatial prediction modes
for 4x4 transform blocks. In some embodiments, each of the
nine modes may be used to independently process a block,
and then rate-distortion optimization is used to select the best
mode.

The H.264 standard also prescribes the use of motion pre-
diction/compensation to take advantage of temporal predic-
tion. Accordingly, the encoder 10 has a feedback loop that
includes a de-quantizer 28, inverse transform processor 30,
and deblocking processor 32. The deblocking processor 32
may include a deblocking processor and a filtering processor.
These elements mirror the decoding process implemented by
the decoder 50 to reproduce the frame/slice. A frame store 34
is used to store the reproduced frames. In this manner, the
motion prediction is based on what will be the reconstructed
frames at the decoder 50 and not on the original frames, which
may differ from the reconstructed frames due to the lossy
compression involved in encoding/decoding. A motion pre-
dictor 36 uses the frames/slices stored in the frame store 34 as



US 9,172,962 B2

7

source frames/slices for comparison to a current frame for the
purpose of identifying similar blocks. Accordingly, for mac-
roblocks or coding units to which motion prediction is
applied, the “source data” which the transform processor 22
encodes is the residual data that comes out of the motion
prediction process. For example, it may include information
regarding the reference frame, a spatial displacement or
“motion vector”, and residual pixel data that represents the
differences (if any) between the reference block and the cur-
rent block. Information regarding the reference frame and/or
motion vector may not be processed by the transform proces-
sor 22 and/or quantizer 24, but instead may be supplied to the
entropy encoder 26 for encoding as part of the bitstream along
with the quantized coefficients.

Those ordinarily skilled in the art will appreciate the details
and possible variations for implementing video encoders.

The decoder 50 includes an entropy decoder 52, dequan-
tizer 54, inverse transform processor 56, spatial compensator
57, and deblocking processor 60. The deblocking processor
60 may include deblocking and filtering processors. A frame
buffer 58 supplies reconstructed frames for use by a motion
compensator 62 in applying motion compensation. The spa-
tial compensator 57 represents the operation of recovering the
video data for a particular intra-coded block from a previ-
ously decoded block.

The bitstream 14 is received and decoded by the entropy
decoder 52 to recover the quantized coefficients. Side infor-
mation may also be recovered during the entropy decoding
process, some of which may be supplied to the motion com-
pensation loop for use in motion compensation, if applicable.
For example, the entropy decoder 52 may recover motion
vectors and/or reference frame information for inter-coded
macroblocks.

The quantized coefficients are then dequantized by the
dequantizer 54 to produce the transform domain coefficients,
which are then subjected to an inverse transform by the
inverse transform processor 56 to recreate the “video data™. It
will be appreciated that, in some cases, such as with an intra-
coded macroblock or coding unit, the recreated “video data”
is the residual data for use in spatial compensation relative to
a previously decoded block within the frame. The spatial
compensator 57 generates the video data from the residual
data and pixel data from a previously decoded block. In other
cases, such as inter-coded macroblocks or coding units, the
recreated “video data” from the inverse transform processor
56 is the residual data for use in motion compensation relative
to a reference block from a different frame. Both spatial and
motion compensation may be referred to herein as “predic-
tion operations”.

The motion compensator 62 locates a reference block
within the frame buffer 58 specified for a particular inter-
coded macroblock or coding unit. It does so based on the
reference frame information and motion vector specified for
the inter-coded macroblock or coding unit. It then supplies
the reference block pixel data for combination with the
residual data to arrive at the reconstructed video data for that
coding unit/macroblock.

A deblocking/filtering process may then be applied to a
reconstructed frame/slice, as indicated by the deblocking pro-
cessor 60. After deblocking/filtering, the frame/slice is output
as the decoded video frame 16, for example for display on a
display device. It will be understood that the video playback
machine, such as a computer, set-top box, DVD or Blu-Ray
player, and/or mobile handheld device, may buffer decoded
frames in a memory prior to display on an output device.

Itis expected that HEVC-compliant encoders and decoders
will have many of these same or similar features.

10

15

20

25

30

35

40

45

50

55

60

65

8

Significance Map Encoding

As noted above, the entropy coding of a block or set of
quantized transform domain coefficients includes encoding
the significance map (e.g. a set of significant-coefficient flags)
for that block or set of quantized transform domain coeffi-
cients. The significance map is a binary mapping of the block
indicating in which positions (other than the last position)
non-zero coefficients appear. The block may have certain
characteristics with which it is associated. For example, it
may be from an intra-coded slice or an inter-coded slice. It
may be a luma block or a chroma block. The QP value for the
slice may vary from slice to slice. All these factors may have
an impact on the best manner in which to entropy encode the
significance map.

The significance map is converted to a vector in accordance
with the scan order (which may be vertical, horizontal, diago-
nal, zig zag, or any other scan order prescribed by the appli-
cable coding standard). The scan is typically done in
“reverse” order, i.e. starting with the last significant coeffi-
cient and working back through the significant map in reverse
direction until the flag at [0,0] is reached. In the present
description, the term “scan order” is intended to mean the
order in which flags, coefficients, or groups, as the case may
be, are processed and may include orders that are referred to
colloquially as “reverse scan order”.

Each significant-coefficient flag is then entropy encoded
using the applicable context-adaptive coding scheme. For
example, in many applications a context-adaptive binary
arithmetic coding (CABAC) scheme may be used.

With 16x16 and 32x32 significance maps, the context for a
significant-coefficient flag is (mostly) based upon neighbor-
ing significant-coefficient flag values. Among the contexts
used for 16x16 and 32x32 significance maps, there are certain
contexts dedicated to the bit position at [0,0] and (in some
example implementations) to neighboring bit positions, but
most of the significant-coefficient flags take one of four or five
contexts that depend on the cumulative values of neighboring
significant-coefficient flags. In these instances, the determi-
nation of the correct context for a significant-coefficient flag
depends on determining and summing the values of the sig-
nificant-coefficient flags at neighboring locations (typically
five locations, but it could be more or fewer in some
instances).

In previous work, the present applicants described the use
of multi-level significance maps, in which the significance
map of a transform unit is partitioned into coefficient groups
and each coefficient group is encoded in a predefined order.
Within each coefficient group (which may be a block/sub-
block) the significant-coefficient flags are processed in a scan
order. Each coeficient group is associated with a significant-
coefficient-group flag, which indicates whether that coeffi-
cient group may be considered to contain non-zero signifi-
cant-coefficient flags. Reference may be made to U.S. patent
application Ser. No. 13/279,397 filed Oct. 24, 2011, entitled
“Significance Map Encoding and Decoding Using Partition
Selection”; U.S. patent application Ser. No. 13/286,336, filed
Nowv. 1, 2011, entitled “Multi-level Significance Maps for
Encoding and Decoding”; and U.S. patent application Ser.
No. 61/561,872, filed Nov. 19, 2011, entitled “Multi-level
Significance Map Scanning”. The contents of all three appli-
cations are hereby incorporated by reference.

One of the techniques described in the foregoing applica-
tions is implementation of a one-pass scanning process; i.e. a
group-based or multi-level scanning order. Reference is now
made to FIG. 3, which shows a 16x16 transform unit 100 with
a multi-level diagonal scan order illustrated. The transform
unit 100 is partitioned into sixteen contiguous 4x4 coefficient



US 9,172,962 B2

9

groups or “sets” of significant-coefficient flags. Within each
coefficient group, a diagonal scan order is applied at the
group-level, rather than across the whole transform unit 100.
The sets or coefficient groups themselves are processed in a
scan order, which in this example implementation is also a
diagonal scan order. It will be noted that the scan order in this
example is illustrated in “reverse” scan order; that is, the scan
order is shown progressing from the bottom-right coefficient
group in a downward-left diagonal direction towards the
upper-left coefficient group. In some implementations the
same scan order may be defined in the other direction; that is,
progressing in a upwards-right diagonal direction and when
applied during encoding or decoding may be applied in a
“reverse” scan order.

In order to facilitate discussion for the purpose of the
present application, the coefficients of a 4x4 coefficient group
(or set) are indexed as follows:

15 | 13

411 7 3

It will be appreciated that diagonal is one option, and in
other embodiments horizontal, vertical, zig-zag, or other scan
orders may be applied, within the coefficient groups and/or at
the group-level for ordering the processing of the coefficient
groups.

When symbols are processed sequentially (whether for
encoding or decoding), i.e., non-pipelined, the BAC engine is
not fully utilized. Each binary symbol goes through the three
stages of processing (c-b-p: context derivation, binary arith-
metic coding, probability update) without any other symbol
being processed at the same time. Assuming one cycle is
required for each BAC engine stage, encoding or decoding
one symbol uses three cycles.

When processing is done in a pipeline, the BAC engine can
be fully utilized as long as the context of the current encoded
or decoded symbol can be determined at the beginning of “c”
stage. By using speculative execution and arranging the order
of'the encoding and decoding appropriately, we can meet this
requirement and fill up the pipeline at any time except for the
prologue, epilogue, and special cases. When a full pipeline is
established, the throughput of the BAC engine is improved to
three times that of the sequential processing.

The non-pipelined vs. pipelined processing is shown in the
tables below, where G(s, t) means execution of stage s for bin
index t, and j is the cycle count. It shows that for the same
number of cycles, the pipelined BAC engine has three times
greater bin throughput than the non-pipelined one.

non-pipelined BAC engine

c b P
j=0 Glc, 0)
j=1 G(b, 0)
i=2 G(p, 0)
j=3 Gle, 1)
i=4 Gib, 1)
j=3

Gp, 1)

10

15

20

25

30

35

40

45

50

55

60

65

10

-continued

non-pipelined BAC engine

c b P
j=n G(c, n/3)
j=n+1 G(b, n/3)
j=n+2 G(p, n/3)
pipelined BAC engine
c b P
prologue j=0 G(c, 0)
j=1 Gle, 1) G(b,0)
i=2 G(e,2) G, 1) G(p, 0)
i=3 G(e,3)  G(b,2) G, 1)
i=4 G(c,4)  G(b,3) G(p,2)
i=5 Gle,5)  G(b,4) G, 3)
j=n G(c, n) G(b,n-1) G(p,n-2)
epilogue j=n+1 G(b, n) G(p,n-1)
j=n+2 G(p, n)

The pipelined BAC engine may run into problems where
the context of a significant-coefficient flag is dependent upon
its neighboring flags. For example with size 16x16 or 32x32

transform units, the context of significant-coefficient flag “x
is dependent upon the five neighboring flags as follows:

This means that provided the significant-coefficient flags in
the “0” positions are processed at least three cycles prior to
the symbol in the “x” position then the processing of the “x”
flag will not impact the pipelining. With conventional trans-
form-unit-based scan orders this is usually the case, except
for the five coefficient flags in the bottom right corner of the
transform unit. In some embodiments, those five flags may be
assigned a context based on their positions, rather than on the
values of their neighbours. The same issue may arise in the
upper left corner; however, the upper five flags have a context
that is based on position, not on neighboring flags, which
eliminates this problem.

The problem of BAC engine stalls becomes more signifi-
cant in the case of a multi-level map scan order in which the
significant-coefficient flags within each coefficient group are
processed in scan order within the coefficient group, as illus-
trated in FIG. 3. In this case, data dependencies arise in the
lower-right and upper-left portions of every coefficient group.
For example, with a diagonal scan order like that illustrated in
FIG. 3, positions 1, 2, 3, 4, 13, 14, and 15 in every coefficient
group have data dependencies during context derivation that
will prevent the BAC engine from being fully utilized.
Modified Scan Order

In general, the multi-level scan order in which significant-
coefficient flags are processed may be modified to avoid data
dependencies that cause BAC engine stalls. In short, at the
end ofa cycle M, if the next bin to be encoded or decoded has
a dependency that would introduce a stall in the BAC engine
during cycle M+1, look ahead in the scan order and instead
encode or decode a bin whose context can be determined at
the beginning of M+1.



US 9,172,962 B2

11

Note that the present application may use the terms “coef-
ficient group” and “set of significant-coetficient flags™ inter-
changeably. They are intended to have the same meaning.

In a first embodiment, the scan order is modified so as to
time the processing of particular flags to avoid data depen-
dencies. Leaving aside the special cases that occur in the
bottom-right corner or upper-lett corner of the transform unit,
the scan order within a block excludes the bottom-right (index
0) position of the block and the upper-left (index 15) position
in the block. Instead, in place of the bottom-right position of
the block the scan order processes the upper-left position of
the previous block; and, instead of the upper-left position in
the block, the scan order processes the bottom-right position
of the next block. The terms “previous block™ and “next
block” refer to the sequence or order in which the individual
blocks are processed, i.e. the block-level scan order. In one
sense, this embodiment may be considered to involve a redefi-
nition of the coefficient groups. That is, it may be considered
as defining a non-block-based coefficient group, so as to
avoid the data dependencies. Rather than each coefficient
group being a 4x4 block of significant-coefficient flags, each
coefficient group in this embodiment is the 4x4 set excluding
the upper-left and lower-right flags and including an upper-
left flag from the previous block and a lower-right flag from
the next block. The set of significant-coefficient flags within
the coefficient group is scanned in the modified scan order.
Each coefficient group is scanned in turn. As will be described
further below, a second embodiment maintains the block-
based coefficient groups and realizes the same modified scan
order by jumping between coefficient groups whilst process-
ing the flags.

Reference is now made to FIG. 4, which diagrammatically
illustrates the first embodiment of a modified scan order. FIG.
4 shows a 16x16 transform unit 110. The transform unit 110
is shown notionally divided into 4x4 blocks for ease of illus-
tration. Under the scan order illustrated in FIG. 3, all sixteen
significant-coefficient flags in each block would be diago-
nally scanned before moving to the next block (“next block”
means next in a group level scan order, which in this example
embodiment is also diagonal). In this case, the modified scan
order shifts the processing of the upper-left flag and the lower-
right flag in each block into the adjacent block. The number-
ing of the significant-coefficient flag positions indicates the
scan order for respective flags 0, 1, . . . 15 for an example
coefficient group. In this example case, the scan order (index
0) begins with what was previously position 1 in the 4x4
indexing convention described above. Index 2 is taken from
the last position (upper left flag) of the previous block. Index
13 is taken from the first position (lower right flag) of the next
block.

FIG. 5 shows the transform unit 110 of FIG. 4 with addi-
tional coefficient groups illustrated in their scan order. Shad-
ing indicates which significant-coefficient flags belong to a
common coefficient group.

FIG. 6 shows alinear illustration of the modified scan order
114 as a mapping from the sub-block scan order 116, where
the sub-block scan order corresponds to the scan order illus-
trated in FIG. 3. It will be noted that the resulting coefficient
groups in the modified scan order 114 still each contain six-
teen significant-coefficient flags. The flags in positions 3
through 12 are unchanged in terms of their position in the scan
order. In effect, what has occurred is that the significant-
coefficient flag that was formerly processed first in the scan
order, i.e. index 0, has been moved up by three cycles to be
processed at index 13 in the previous coefficient group, and
the significant-coefficient flag that was formerly processed
last, i.e. index 15, in the scan order has been delayed three

10

15

20

25

30

35

40

45

50

55

60

65

12

cycles to be processed at index 2 in the next coefficient group.
This results in the processing of the significant-coefficient
flags at index 1 and index 2 advancing by one cycle to index
0 and index 1, respectively, and results in the processing of
significant-coefficient flags at index 13 and 14 being delayed
by one cycle to index 14 and index 15, respectively.

The modifications to the scan order are based on the geom-
etry of the former block-based coefficient groups, the diago-
nal scan order applied within the block, and the context
model. The modifications reflected in FIGS. 4 to 6 avoid the
data dependencies because the significant-coefficient flag
formerly processed at index O (i.e. first in the scan order), is
now processed three cycles earlier during the processing of
the previous coefficient group. This means that the BAC
engine will be done processing that lower left significant-
coefficient flag when it starts with index 0 in the modified scan
order (the significant-coefficient flag immediately above the
lower-right significant-coefficient flag). Thus the lower-right
significant-coefficient flag is available for context determina-
tion.

Similarly, at the upper-left corner of the block, the process-
ing of the upper-left significant-coefficient flag is delayed by
three cycles so that it is processed during the processing of the
next coefficient group. This means that the BAC engine will
be done processing the neighboring significant-coefficient
flags to the right and below the upper-left significant-coeffi-
cient flag by the time it starts on the upper-left significant-
coefficient flag, and the neighboring significant-coefficient
flags will be available for context determination.

Accordingly, the modified scan order shown in FIGS. 4-6
permits efficient pipelining of the BAC engine without risk of
stalls.

It will be appreciated that the illustrations shown in FIGS.
4-6 do not address the significant-coefficient flags in the
bottom-right of the transform unit or the upper-left of the
transform unit because these flags have a context that is
dependent on coefficient position and not upon neighboring
flags, so they do not present an issue for BAC engine stalls.
Practical implementations in hardware or software may
incorporate exception handling into the encoding/decoding
routines to manage these special cases (among others).

In a variation to this embodiment, the modified scan order
is based upon a block-based zig-zag scan instead of'a diagonal
scan.

As described in previous applications, such as U.S. patent
application Ser. No. 13/286,336, filed Nov. 1, 2011, entitled
“Multi-level Significance Maps for Encoding and Decod-
ing”; and U.S. patent application Ser. No. 61/561,872, filed
Now. 19, 2011, entitled “Multi-level Significance Map Scan-
ning”, the use of multi-level significance maps involves the
encoding of an L1 or higher level significance map that indi-
cates which coefficient groups may be expected to contain
non-zero significant-coefficient flags, and which coefficient
groups contain all zero significant-coefficient flags. The coet-
ficient groups that may be expected to contain non-zero sig-
nificant-coefficient flags have their significant-coefficient
flags encoded, whereas the coefficient groups that contain all
zero significant-coefficient flags are not encoded (unless they
are groups that are encoded because of a special case excep-
tion because they are presumed to contain at least one non-
zero significant-coefficient flag). Each coefficient group has a
significant-coefficient-group flag (unless a special case
applies in which that coefficient group has a flag of a pre-
sumed value, such as the group containing the last significant
coefficient, the upper left group, etc.).

The significant-coefficient group flags are encoded based
on their context. Some of the example context models



US 9,172,962 B2

13

described in the previous applications were based upon the
significant-coefficient-group flags of neighboring coefficient
groups. For example, one proposed context model for encod-
ing a significant-coefficient-group flag determines context
based on the value of the significant-coefficient-group flags of
the coefficient group to the right and the coefficient group
below.

It will be appreciated that the modified scan order may
introduce some inaccuracies in a context model for signifi-
cant-coefficient-group flags that are based on the significant-
coefficient-group flags of “adjacent” groups, since the coef-
ficient groups are no longer contiguous blocks. Instead, with
the modified scan order, each coefficient group is a mostly
contiguous block with up to two outliers. As shown in FIG. 5,
the outliers may by physically geometrically separated from
the rest of the significant-coefficient flags of the coefficient
group by a substantial distance. This means that the value of
that outlier flag does not necessarily correlate well with the
values of the flag in a group neighboring the rest of the
significant-coefficient flags.

Therefore, in one embodiment, the context model for sig-
nificant-coefficient-group flags may be based not upon the
neighboring significant-coefficient-group flags, but upon
whether there is a non-zero significant-coefficient flag in the
neighboring coefficient group excluding the outlier signifi-
cant-coefficient flags, i.e. the significant-coefficient flags at
indexes 2 and 13.

In yet another embodiment, the context model includes the
“outliers” if they are within a block adjacent the current
coefficient group, but excludes them otherwise. Reference is
now made to FIG. 7, which diagrammatically shows an
example 16x16 transform unit 200. [llustrated on the example
transform unit 200 are three coefficient groups which are
distinguished in the diagram using shading/patterning.

A current coefficient group 201 includes significant-coef-
ficient flags at outlier positions 202 and 203. To determine the
context for encoding the significant-coefficient-group flag for
coefficient group 201, the encoder/decoder looks at the right
neighboring coefficient group 204 and the below neighboring
coefficient group 206. In prior example context models, the
current context for coefficient group 201 would have been
based on the significant-coefficient-group flags for coefficient
groups 204 and 206. In particular one example would have
assigned a context of 1 to coefficient group 1 if the lower and
right significant-coefficient-group flags were both 1 and a
context of 0 otherwise. Moreover, aside from context deter-
mination, in some embodiments a special case was imple-
mented in which the significant-coefficient-group flag for
coefficient group 201 would have been inferred to be 1 (irre-
spective of whether the coefficient group 201 actually con-
tains a non-zero significant-coefficient flag) if both the lower
and right significant-coefficient-group flags were 1.

It will be noted that the lower and right coefficient groups
204, 206 each have outliers that are geometrically separated
from the coefficient group 201. In particular outlier 208 (la-
beled “Y”) and outlier 214 (labeled “X”) lie in distant parts of
the transform unit. As a result, these significant-coefficient
flags are not necessarily well correlated to the significant-
coefficient flags within the coefficient group 201. Therefore,
to the extent that these outliers 208, 214 impact the determi-
nation of the significant-coefficient-group flags for coeffi-
cient groups 204 and 206, they can have a deleterious impact
on the context determination for coefficient group 201 and/or
onthe efficient use of the special case exception. Accordingly,
the context model for determining the significant-coefficient-
group flag for coefficient group 201 (and the mechanism for
determining the special case) may be modified to better
reflect the geometry.

It will be noted that outlier significant-coefficient flags 210
and 212, while separated from their respective coefficient

5

10

15

20

25

30

35

40

45

50

55

60

65

14

groups 204, 206, are still within the geometric vicinity of the
coefficient group 201, since they nest within the other of the
neighbor coefficient groups 206, 204, respectively. There-
fore, there is no need to exclude consideration of these outlier
significant-coefficient flags.

In addition, the significant-coefficient flag at position “Z”
216, which will have been processed during processing of the
coefficient group to the right and above the current coefficient
group 201, may be worth considering when assessing context
of the current coefficient group 201.

If L is defined as the significance (whether there is a non-
zero significant-coefficient-flag) of the lower neighboring
coefficient group 206, disregarding the significance at posi-
tion “X” 214; and if R is defined as the significance of the right
neighboring coefficient group 204, disregarding the signifi-
cance at position “Y” 208. Moreover, the significance of
position “Z” 216, belonging to an upper right coefficient
group, may be used. Using this nomenclature a new context
model may be expressed as:

C=min(1,L+R+S_7),

where C is the context of the current coefficient group for
determining its significant-coefficient-group flag, S_7=0 if
we choose not to use position Z and
S_7=significant_coeff_flag of position Z if we do choose to
use position Z. If L+R+S_7Z=2, we infer significant_coeff-
group_flag=1. Otherwise, C=0 or C=1, corresponding to two
different contexts respectively. Other variations are possible.
For example, three contexts may be defined (0, 1, 2) and no
inference may be made.

In a second embodiment, the modified scan order is imple-
mented by maintaining the block-based coefficient groups,
but jumping between the groups while processing the signifi-
cant-coefficient flags in order to avoid data dependencies.

Reference is now made to FIG. 8, which shows, in flow-
chart form, a simplified example of a process 300 for decod-
ing a bitstream of encoded significant-coefficient flags in the
course of reconstructing video data. It will be appreciated that
the encoding process is largely similar. As mentioned above,
for the purposes of illustration and explanation, the following
indexing or labeling of the positions within a 4x4 block of
significant-coefficient flags will be used:

15113]110] 6
411117713
12181141
95210

The exception handling that may occur in the decoding of
the coefficient group containing the last significant coefficient
is not illustrated in FIG. 8. It will be appreciated that the
geometric position of the last significant coefficient within the
last coefficient group (the first group to be processed in
reverse group-level scan order or sequence), may require
special handling. Further details of example special handling
are provided later in a discussion of example syntax.

Assume that the decoder is dealing with a “current” coef-
ficient group in the group-level scan order or sequence other
than the coefficient group containing the last significant coef-
ficient. In operation 302 of the process 300, the encoder or
decoder decodes (or infers) the significant-coefficient-group
flag for the next coefficient group. It will be noted that the
significant-coefficient-group flag being decoded is for the
next coefficient group in the sequence, not the current coef-
ficient group. Accordingly, in this embodiment the signifi-
cant-coefficient-group flag for a coefficient group is not



US 9,172,962 B2

15

encoded immediately prior to its significant-coefficient flags
(if they are to be encoded), but rather is encoded among the
significant-coefficient flags of the preceding coefficient group
in the sequence.

It will also be noted that in this embodiment the significant-
coefficient-group flag may be inferred in some cases. This
addresses the ‘special case’ in which the significant-coeffi-
cient-group flags of the coefficient groups below and to the
right are both 1.

Having decoded or inferred the significant-coefficient-
group flag for the next coefficient group, in operation 304 the
decoder then decodes (or infers, depending on the significant-
coefficient-group flag for the current coefficient group) the
significant-coefficient flags at positions 3 through 12 of the
current coefficient group (may not start with position 3 in
some instances, such as within the group containing the last
significant coefficient, but that detail is omitted to improve
readability of the example process 300).

It will be appreciated that in the process 300, and in the
present application in general, when an operation refers to the
decoder “decoding or inferring” a significant-coefficient flag,
the intended meaning is that the decoding process is initiated.
Itis not necessarily completed before the next operation. The
context determination for a flag may be completed in one
cycle and in a next cycle the context determination for the
subsequent flag may be initiated even though the BAC decod-
ing and context update for the previous significant-coefficient
flag is not yet complete.

In operation 306 the decoder then decodes or infers the
significant-coefficient flag at position 0 of the next coefficient
group. The next coefficient group is the coefficient group
immediately after the current coefficient group in the group-
level scan order or sequence. It will be recalled that in opera-
tion 302 the significant-coefficient-group flag for the next
coefficient group was decoded. Thus the decoder is able to
determine whether to decode or infer the significant-coeffi-
cient flag at position 0 of that next coefficient group.

In operation 308, the decoder then returns to the current
coefficient group to decode or infer the significant-coefficient
flags at positions 13 and 14 of the current coefficient group. In
operation 310, the decoder decodes or infers the significant-
coefficient flag at positions 1 and 2 of the next coefficient
group. Then in operation 312 the decoder decodes or infers
the significant-coefficient flag at position 15 of the current
coefficient group.

The decoder then assesses whether the next coefficient
group is the last coefficient group in the sequence or not in
operation 314. If it is the last coefficient group, then the
decoder goes on to decode or infer the remaining significant-
coefficient flags for positions 3 to 15 of that last coefficient
group in operation 318. No stall of the BAC engine will result
since the context for the flags in the upper-left positions of that
coefficient group are dependent upon the position and not the
neighboring flags.

10

20

25

30

35

40

45

50

16

Ifthe next coefficient group is not the last coefficient group,
then in operation 316 the decoder increments a coefficient
group index such that the next coefficient group now become
the current coefficient group and it returns to operation 302 to
continue the decoding process 300.

Another description of the encoding/decoding process of
this embodiment is set out below, in which the current coef-
ficient group is denoted C and the next coefficient group in the
sequence of coefficient groups is denoted N. The below pro-
cess uses a notion of “TruelLast” for special handling of the
case where the last significant-coefficient flag (i.e. the first
flag to be processed in the transform unit in reverse scan order
from the last significant coefficient) is in the 15%, 14”, or 13
position. The example process is as follows:

1. Initialization: start encoding (decoding) at the position

before the last non-zero transform coefficient.

2. Find the next coefficient group in the sequence and
denote it N. If N exists (i.e. C is not the upper left
coefficient group), encode (decode) the significant-co-
efficient-group flag of N.

3. Encode (decode) or infer the significant-coefficient flags
in the current coefficient group C in reverse scan order,
starting at the first significant-coefficient flag in C that
has not been encoded (decoded) or inferred, denoted as
trueLast, until position 13 is reached. If N does not exist,
go to Step 5.

4. Encode (decode) or infer the significant-coefficient flag
at position 0 in N.

5. If trueLast<=13, encode (decode) the significant-coeffi-
cient flag at position 13 in C.

6. If trueLast<=14, encode (decode) the significant-coeffi-
cient flag at position 14 in C. If N does not exist, go to
Step 8.

7. Encode (decode) or infer the significant-coefficient flags
at positions 1 and 2 in N.

8. Encode (decode) or infer the significant-coefficient flag
at position 15 in C.

9. If N exists, set C=N and go to Step 2. Otherwise, stop.

An example syntax for implementing multi-level signifi-
cance maps is provided below. This example syntax is but one
possible implementation.

In the syntax exemplified by the pseudo-code below, if the
transform unit size is 16x16 or 32x32 (e.g. log 2(TrafoSize)
>3), then the example process is performed. It will be noted
that the example syntax uses the concepts of a trueLastOffset
and a virtualLastOffset to handle the exceptions and special
cases that may occur when applying the modified scan order
to the coefficient group containing the last significant coeffi-
cient.

The following pseudo-code illustrates one example imple-
mentation of a modified scan order within the decoding pro-
cess for reconstruction of significant-coefficient flags.

residual__coding_cabac( x0, y0, log2 TrafoSize, trafoDepth, scanldx, cldx ) { Descriptor
last_significant_ coeff_ x ae(v)
last_significant_ coeff_y ae(v)

numCoeff =0

XC = ScanOrder| log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][ numCoeff ][ 0]
yC = ScanOrder| log2TrafoSize — 2 ][ log2 TrafoSize — 2 ][ scanldx ][ numCoeff ][ 1

]

while( ( xC !=last_significant_coeff_x ) || ( yC != last_significant_coeff_y ) ) {

numCoeff++

XC = ScanOrder| log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][ numCoeff ][ 0 ]
yC = ScanOrder| log2TrafoSize — 2 ][ log2 TrafoSize — 2 ][ scanldx ][ numCoeff ][ 1 ]

if (log2 TrafoSize > 3) {
numCoeffGroup = ((numCoeff + 15) *16) >> 4

trueLastOffset = numCoeff - ((numCoeffGroup — 1) * 16) - 1
virtualLastOffset = trueLastOffset < 2 ? 2 : trueLastOffset



US 9,172,962 B2
17 18

-continued

residual__coding__cabac( X0, y0, log2TrafoSize, trafoDepth, scanldx, cIdx ) { Descriptor

numNonZeroesInCG = 1
inferredCGFlag = false
for (nCG = numCoeffGroup - 1; nCG >= 0; nCG--) {
numNonZeroesInNextCG = 0
inferredNextCGFlag = false
XCG = ScanOrder[ log2trafoSize — 4 ][ log2trafoSize — 4 [ scanldx ][ nCG ][ 0]
yCG = ScanOrder[ log2trafoSize — 4 ][ log2trafoSize — 4 ][ scanldx ][ nCG ][ 1]
xNextCG = ScanOrder[ log2trafoSize — 4 ][ log2trafoSize — 4 ][ scanldx ][ nCG -1 ][ 0]
yNextCG = ScanOrder[ log2trafoSize — 4 |[ log2trafoSize — 4 ][ scanldx ][ nCG - 1] 1]
sigStartOffset = (nCG == numCoeffGroup-1 ? virtualLastOffset : 12)
if @CG == numCoeffGroup-1 || nCG == 0) {
significant__coeffgroup_ flag[ xCG ][ yCG ] =1

if mCG >0) {
rightCGFlag = (xNextCG == (1<< (log2trafoSize — 2 ) ) — 1)? 0: significant_ coeffgroup_ flag[
xNextCG+][ yNextCG |
bottomCGFlag = (yNextCG == (1 << (log2trafoSize — 2 ) ) — 1)? 0: significant coeffgroup_ flag[
xNextCG ] [ yNextCG+1 ]
if ( rightCGFlag + bottomCGFlag !=2 ) {
significant_ coeffgroup_ flag[ xNextCG ][ yNextCG | ae(v)
}else {
significant_ coeffgroup_ flag[ xNextCG ][ yNextCG ] =1
inferredNextCGFlag = true

for (m = sigStartOffset ; m >= 0; m—- ) {
f(nCG>0&& (m==2|m==0){
coeffsInNextCG =(m==0?2:1)
coeffldxInNextCG = (m == 0 ? (nCG - 1)*16 + 14 : (nCG - 1)*16 + 15)
for (j = 0; j < coeffsInNextCG; j++) {
xC = ScanOrder|[ log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][ coeffldxInNextCG - j

yC = ScanOrder|[ log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][ coeffldxInNextCG - j

significant_ coeff_ flag[ xC][yC]=0
if (significant_coeffgroup_ flag[ xNextCG ][ yNextCG ] ) {
significant_coeff. flag[ xC ][ yC ] ae(v)
numNonZeroesInNextCG += significant_ coeffflag[ xC ][ yC ]

}

xXC = ScanOrder| log2TrafoSize — 2 ][ log2 TrafoSize — 2 ][ scanldx ][ nCG*16 + m ][ 0 ]
yC = ScanOrder| log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][ nCG*16 + m ][ 1 ]
if (significant_coeffgroup_ flag] xCG J[yCG ] ) {
if (1(nCG == numCoeffGroup - 1 && m >= trueLastOffset) ) {
if (m > 0 || inferred CGFlag || numNonZeroesInCG) {
significant_coeff. flag[ xC ][ yC ] ae(v)
numNonZeroesInCG += significant_ coeff_ flag[ xC ][ yC ]

} else {
significant_ coeff_ flag[ xC][yC]=1
¥

¥
}else {
significant__coeff flag[ xC ][yC =0
¥

inferredCGFlag = inferredNextCGFlag
numNonZeroesInCG = numNonZeroesInNextCG

¥
} else {
for(n =numCoeff- 1 ; n>=0;n--) {
xXC = ScanOrder| log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][n ][ 0]
yC = ScanOrder| log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][n ][ 1]

significant__coeff flag[ xC ][ yC ] ae(v)
¥
....(decoding of coefficient values and signs omitted)
¥
60
In yet a third embodiment, the process of the second have significant-coefficient flags to encode, rather than one
embodiment may be modified such that the encoding of flags for which the flags may be inferred.
from the ‘next’ coefficient group is based on locating a ‘next’ A simplified example process 400 illustrating the third
coefficient group for which the significant-coefficient-group embodiment is shown in flowchart form in FIG. 9. As was the
flag=1. That is, when looking ahead to encode a significant- 65 case with FIG. 8, some of the exception and special case
flag for position 0 in the next coefficient group, the encoder/ handling for starting the process 400 in the coetficient group

decoder looks for the next coefficient group that will actually containing the last significant coefficient is not shown in FIG.



US 9,172,962 B2

19

9. FIG. 9 shows at least a portion of this example process of
reconstructing the significant-coefficient flags for a transform
unit from the encoded data of a bitstream. It bears repeating
that the operation of “decoding or inferring” is intended to
mean that the decoding process is started, but not necessarily
completed before the next operation.

The process 400 is presumed to be operating on a current
coefficient group, i.e. set of significant-coefficient flags. The
process 400 includes an operation 402 of decoding or infer-
ring the values of the significant-coefficient flags for positions
3 through 12 of the current coefficient group. Once the
decoder reaches position 12, the decoder then decodes a
significant-coefficient-group flag for the next coefficient
group in the group-level scan order or sequence, as shown by
operation 404. Denote the next coefficient group in the
sequence as nextCG.

If the decoded (or inferred) significant-coefficient-group
flag for the next coefficient group nextCG is equal to 0, then
in operation 408 all the significant-coefficient flags of that
next coefficient group are set to zero, and the decoder incre-
ments the nextCG to the next group in the sequence in opera-
tion 410. It then returns to operation 404 to decode the sig-
nificant-coefficient-group flag for that nextCG. This
continues until the decoder decodes or infers a significant-
coefficient-group flag that is equal to 1.

Once the decoder obtains a significant-coefficient-group
flag=1, the decoder advances to operation 412 to decode or
infer the significant-coefficient flag at position 0 within that
nextCG. In operation 414, the decoder decodes or infers the
significant-coefficient flags at positions 13 and 14 of the
current coefficient group. In operation 416, the significant-
coefficient flags at positions 1 and 2 of the nextCG are
decoded or inferred. Then in operation 418 the significant-
coefficient flag at position 15 of the current coefficient group
is decoded or inferred.

The decoder then assesses whether the nextCG is the last
coefficient group in the sequence, i.e. whether it is the upper-
left group in the transform unit. If not, then in operation 422,
the current coefficient group is set to be the nextCG and the
decoder returns to operation 402 to continue reconstruction.
If it is the last group, then in operation 424 the decoder
completes the reconstruction by decoding or inferring the
significant-coefficient flags at positions 3 through 15 of the
nextCG (the upper-left group in the transform unit).

It will be appreciated that this process interleaves the
decoding/encoding/inferring of significant-coefficient flags
between coefficient groups having a significant-coefficient-
group flag=1, and which are (in the absence of those groups
that are inferred, i.e. that have a significant-coefficient-group
flag=0) adjacent each other in the sequence or group-level
scan order.

This embodiment introduces an anomalous special case
that should be handled. FIG. 10 illustrates a situation in which
the current coefficient group 450 is to the immediate right and
immediately below the next coefficient group 452 (nextCG),
i.e. in which position 0 of the nextCG 452 is diagonally
adjacent position 15 of the current coefficient group 450. It
will be noted that the coefficient groups between the current
coefficient group 450 and the nextCG 452 in the sequence
contain all zero significant-coefficient flags.

In this situation, the modified scan order would result in the
encoding of position 0 of the nextCG 452 before the encoding
of positions 13, 14 or 15 from the current coefficient group
450. As a result, those values (13, 14, and 15) are unavailable
for context modeling at the time of the encoding of position 0.

10

15

20

25

30

35

40

45

50

55

60

65

20

In this special case, the encoding of position 0 in nextCG
452 before encoding positions 13 and 14 may be skipped and
performed in a conventional scan order. Similarly, in some
implementations in this special case the encoding of positions
1 and 2 prior to encoding position 15 may be skipped and
performed in a conventional scan order. This will result in
under-utilization of the BAC engine in this specific instance.

In another embodiment, this special situation may be
addressed by using a modified context model for this specific
instance. For example, the modified context model for encod-
ing position 0 could be structured to exclude position 15 as an
element of the model:

Another description of the encoding/decoding process of
this third embodiment of the modified scan order is set out
below, in which the current coefficient group is denoted C and
the next coefficient group in the sequence of coefficient
groups is denoted N. The below process uses a notion of
“TrueLast” for special handling of the case where the last
significant-coefficient flag (i.e. the first flag to be processed in
the transform unit in reverse scan order from the last signifi-
cant coefficient) is in the 157, 14”, or 13 position. The
example process is as follows:

1. Initialization: start decoding significant-coefficient flags
at the position before the last non-zero transform coef-
ficient.

2. Decode the significant-coefficient flags in the current
coefficient group C in reverse scan order, starting at the
first significant-coefficient flag in C that has not been
decoded, denoted as truelast, until position 13 is
reached.

3. Find the next coefficient group, in reverse scan order and
denote it N. If no such coefficient group N exists, go to
Step 6.

4. Decode N’s significant-coefficient-group flag. If N’s
significant-coefficient-group flag=0, set significant-co-
efficient flag=0 for all positions in N and go back to Step
3.

5. Decode the significant-coefficient flag at position 0 in N.

6. If trueLast<=13, decode the significant-coefficient flag
at position 13 in C.

7. If trueLast<=14, decode the significant-coefficient flag
at position 14 in C. If N does not exist, go to Step 9.

8. Decode the significant-coefficient flag at positions 1 and
2inN.

9. Decode or infer the significant-coefficient flag at posi-
tion 15 in C.

10. If N exists, set C=N and go to Step 2. Otherwise, stop.

An example syntax for implementing this third embodi-
ment is provided below. This example syntax is but one pos-
sible implementation. The following pseudo-code illustrates
one example implementation of a modified scan order within
the decoding process for reconstruction of significant-coeffi-
cient flags.



US 9,172,962 B2

21 22
residual__coding_cabac( X0, y0, log2TrafoSize, trafoDepth, scanldx, cIdx ) { Descriptor
last_ significant_ coeff. x ae(v)
last_ significant_ coeff_y ae(v)
numCoeff = 0
xC = ScanOrder] log2 TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][ numCoeff ][ 0 ]
yC = ScanOrder] log2 TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][ numCoeff ][ 1 ]
while( ( XC != last_significant_coeff__x ) || ( yC != last_significant_coeff_y)) {
numCoeff++
xC = ScanOrder| log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][ numCoeff ][ 0 ]
yC = ScanOrder| log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][ numCoeff ][ 1 ]
if (log2TrafoSize > 3) {
CGSize = 16
numCoeffGroup = ((numCoeff + CGSize — 1) *CGSize) >> 4
trueLastOffset = numCoeff - (numCoeffGroup — 1) * CGSize) — 1
virtualLastOffset = trueLastOffset < 2 ? 2 : trueLastOffset
1nCG = numCoeftfGroup - 1
dependency = false
significant_coeffgroup_ flag[ 0 ][0 ]=1
numNonZeroesInCG = 1
inferredCGFlag = false
while (nCG >=0) {
numNonZeroesInNextCG = 0
inferredNextCGFlag = false
nNextCG = nCG
XCG = ScanOrder[ log2trafoSize — 4 [ log2trafoSize — 4 ][ scanldx ][ nCG ][ 0O
yCG = ScanOrder[ log2trafoSize — 4 [ log2trafoSize — 4 ][ scanldx ][ nCG ][ 1
if (mCG == numCoeffGroup-1) {
significant_coeffgroup_ flag] xCG [ yCG ] =1
sigStartOffset = virtualLastOffset
} else if (dependency) {
sigStartOffset = CGSize — 1
}else {
sigStartOffset = CGSize - 4
dependency = false
for (m = sigStartOffset ; m >= 0; m—- ) {
if(m == 2){
nNextCG =nCG -1
while ( nNextCG >= 0) {
xNextCG = ScanOrder[ log2trafoSize — 4 ][ log2trafoSize — 4 ][ scanldx ][
nNextCG ][ 0]
yNextCG = ScanOrder[ log2trafoSize — 4 ][ log2trafoSize — 4 ][ scanldx ][
nNextCG ][ 1]
rightCGFlag = (xNextCG == (1<< (log2trafoSize — 2 ) ) - 1)? 0:
significant__coeffgroup_ flag[ xNextCG+1 ][ yNextCG |
bottomCGFlag = (yNextCG == (1 << (log2trafoSize -2 ) ) - 1)? 0:
significant_coeffgroup_ flag[ xNextCG ] [ yNextCG+1 ]
if ( rightCGFlag + bottomCGFlag !=2) {
significant coeffgroup flag[ xNextCG ][ yNextCG ] ae(v)
} else {
significant_ coeffgroup_ flag] xNextCG ][ yNextCG ] =1
inferredNextCGFlag = true
if (significant_coeffgroup_ flag[ xNextCG ][ yNextCG ] ) {
dependency = (xNextCG == xCG - 1 && yNextCG ==yCG - 1)
if (!dependency) {
n = nNextCG*CGSize + CGSize - 1
xXC = ScanOrder| log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][n ][ 0]
yC = ScanOrder| log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][n ][ 1]
significant coeff flag[ xC ][ yC ] ae(v)

numNonZeroesInNextCG += significant_ coeff flag[ xC ] [yC]

sigStartOffset = CGSize — 4

Break out of while ( nNextCG >=0)
} else {
for(j = CGSize -1;j >= 0;j —-) {
n =nCG*CGSize + j
xC = ScanOrder|[ log2TrafoSize — 2 ]
yC = ScanOrder|[ log2TrafoSize — 2 ]
significant__coeff flag[ xC ][ yC ] =

nNextCG--

}

¥
} else if (m == 0 && nCG > 0) {
if (!dependency) {
for (j=1;j <=2; j++) {
1n = nNextCG*CGSize + CGSize - 1 - ]

xXC = ScanOrder| log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][ n

[
[
0

log2TrafoSize — 2 ][ scanldx ][n ][ 0]
log2TrafoSize — 2 |[ scanldx ][n][ 1]

o]



US 9,172,962 B2

-continued
residual__coding__cabac( X0, y0, log2TrafoSize, trafoDepth, scanldx, cIdx ) { Descriptor
yC = ScanOrder| log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][n ][ 1]
significant__coeff. flag[ xC ][ yC] ae(v)
numNonZeroesInNextCG += significant_ coeffflag[ xC ][ yC ]
¥
¥
if (!(nCG == numCoeffGroup - 1 && m >= trueLastOffset) ) {
if (m >0 || inferred CGFlag || numNonZeroesInCG) {
n =nCG*CGSize + m
xC = ScanOrder] log2 TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx [[n][ 0]
yC = ScanOrder] log2 TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx [[n][ 1]
significant_ coeff_ flag[ xC ][ yC ] ae(v)
numNonZeroesInCG += significant _coeff flag] xC ][ yC]
}else {
significant_ coeff. flag[ xC][yC]=1
¥
¥
inferredCGFlag = inferredNextCGFlag
numNonZeroesInCG = numNonZeroesInNextCG
nCG = nNextCG
¥
} else {
for(n =nnumCoeff - 1;n >=0; n—- ) {
xC = ScanOrder| log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][n ][ 0]
yC = ScanOrder|[ log2TrafoSize — 2 ][ log2TrafoSize — 2 ][ scanldx ][n ][ 1]
significant__coeff flag[ xC ][ yC ] ae(v)

}

1

....(decoding of coefficient values and signs omitted)

In yet a further aspect, the BAC engine stall issue may be
addressed through modifications to the context model instead
of, or in addition to, modifications to the scan order. For
example, the significant-coefficient flags that make up the
“neighborhood” for context determination may be varied
depending upon the position within the block or coefficient-
group. The conventional or usual context model that is cur-
rently in use for determining context for most significant-
coefficient flags based upon their neighbors looks as follows:

where x is the significant-coefficient flag for which context
is being determined and ‘o’ marks the adjacent significant-
coefficient flags used in the context determination. As men-
tioned previously, BAC engine pipeline stalls occur when this
model is applied to a diagonal scan within a 4x4 block.
Specifically, positions 1, 2, 3, 4, 13, 14 and 15 have data
dependencies that prevent full pipelining because their con-
text relies upon a neighbor that is not fully processed by the
BAC engine by the time that position is reached for process-
ing. Accordingly, in one embodiment, the context model for
these positions may be modified to avoid these dependencies.

As one example, consider positions 4 and 15, which under
the above context model are stalled because the adjacent
neighbors to the right and below are unavailable. The signifi-
cant-coefficient flags at these two positions could use a con-
text neighborhood of the form:

40

45

50

55

60

65

thereby avoiding use of the two problematic adjacent sig-
nificant-coefficient flags.

Similarly, positions 1, 3, 13 and 14 may avoid the problem
of'an unavailable neighbor immediately below them by using
a context neighborhood such as:

Speculative execution is used when consecutive bins share
the same context.

In one embodiment, all of positions 0, 1, 2, 3 and 4 are
given the same context and speculative execution is used.

It will be understood that the foregoing context neighbor-
hoods are examples and that, more generally, the neighbor-
hood used for context derivation may be modified to apply
different neighborhoods to flags in different positions within
the coefficient group so as to avoid data dependencies in a
pipelined BAC engine.

Reference is now made to FIG. 11, which shows a simpli-
fied block diagram of an example embodiment of an encoder
900. The encoder 900 includes a processor 902, memory 904,
and an encoding application 906. The encoding application
906 may include a computer program or application stored in
memory 904 and containing instructions for configuring the
processor 902 to perform operations such as those described
herein. For example, the encoding application 906 may
encode and output bitstreams encoded in accordance with the
processes described herein. It will be understood that the



US 9,172,962 B2

25

encoding application 906 may be stored in on a computer
readable medium, such as a compact disc, flash memory
device, random access memory, hard drive, etc.

Reference is now also made to FIG. 12, which shows a
simplified block diagram of an example embodiment of a
decoder 1000. The decoder 1000 includes a processor 1002, a
memory 1004, and a decoding application 1006. The decod-
ing application 1006 may include a computer program or
application stored in memory 1004 and containing instruc-
tions for configuring the processor 1002 to perform opera-
tions such as those described herein. The decoding applica-
tion 1006 may include an entropy decoder configured to
reconstruct residuals based, at least in part, on reconstructing
significant-coefficient flags, as described herein. It will be
understood that the decoding application 1006 may be stored
in on a computer readable medium, such as a compact disc,
flash memory device, random access memory, hard drive, etc.

It will be appreciated that the decoder and/or encoder
according to the present application may be implemented in a
number of computing devices, including, without limitation,
servers, suitably programmed general purpose computers,
audio/video encoding and playback devices, set-top televi-
sion boxes, television broadcast equipment, and mobile
devices. The decoder or encoder may be implemented by way
of software containing instructions for configuring a proces-
sor to carry out the functions described herein. The software
instructions may be stored on any suitable non-transitory
computer-readable memory, including CDs, RAM, ROM,
Flash memory, etc.

It will be understood that the encoder described herein and
the module, routine, process, thread, or other software com-
ponent implementing the described method/process for con-
figuring the encoder may be realized using standard computer
programming techniques and languages. The present appli-
cation is not limited to particular processors, computer lan-
guages, computer programming conventions, data structures,
other such implementation details. Those skilled in the art
will recognize that the described processes may be imple-
mented as a part of computer-executable code stored in vola-
tile or non-volatile memory, as part of an application-specific
integrated chip (ASIC), etc.

Certain adaptations and modifications of the described
embodiments can be made. Therefore, the above discussed
embodiments are considered to be illustrative and not restric-
tive.

What is claimed is:

1. A method of decoding a bitstream of encoded video by
reconstructing significant-coefficient flags for a transform
unit, the transform unit comprising a sequence of blocks, the
bitstream including sets of significant-coefficient flags, each
set corresponding to a respective block, the method compris-
ing:

for each set of significant-coefficient flags, decoding that

set in a scan order, wherein the scan order is a diagonal

scan within its respective block modified so as to

decode a significant-coefficient flag in the bottom-right-
corner position within the respective block corre-
sponding to the set, prior to decoding at least two
significant-coefficient flags of a previous set in the
sequence, and

decode a significant-coefficient flag in the upper-left-
corner position within that respective block, after
decoding at least two significant-coefficient flags of a
subsequent set in the sequence.

2. The method claimed in claim 1, wherein decoding that
set in the scan order comprises:

decoding all the significant-coefficient flags in the set

except significant-coefficient flags in the three last posi

10

15

20

25

30

35

40

45

55

60

65

26

tions located in the upper-left corner in the block-based
diagonal scan;

decoding a significant-coefficient flag in the lower-right

position of the subsequent set; and

decoding significant-coefficient flags in a third-to-last

position and a second-to-last position in the block-based
diagonal scan of the set,

and wherein the diagonal scan is a reverse diagonal scan

order.

3. The method claimed in claim 2, wherein decoding that
set in the scan order further comprises then decoding signifi-
cant-coefficient flags in a second position and a third position
in the block-based diagonal scan of the subsequent set, and
decoding the significant-coefficient flag in the upper-right
position in the set.

4. The method claimed in claim 1, wherein that subsequent
set comprises the next set in the sequence for which an asso-
ciated significant-coefficient-group flag is equal to one.

5. The method of claim 1, wherein decoding of a signifi-
cant-coefficient flag comprises determining a context for the
significant-coefficient flag.

6. The method of claim 5, wherein decoding further com-
prises:

binary arithmetically decoding a value for the significant-

coefficient flag based on the determined context;

and wherein the decoding of the significant-coefficient flag

in the bottom-right position within the respective block
corresponding to the set comprises determining a con-
text for the significant-coefficient flag in the bottom-
right position within that respective block prior to deter-
mining a respective context for the at least two
significant-coefficient flags of the previous set,

and wherein the decoding of a significant-coefficient flag in

the upper-left position within that respective block com-
prises determining a context for the significant-coeffi-
cient flag in the upper-left position within that respective
block after determining a respective context for the at
least two significant-coefficient flags of the subsequent
set.

7. The method claimed in claim 1, wherein decoding a
significant-coefficient flag comprises determining a context
for the significant-coefficient flag, and either

binary arithmetically decoding a value for the significant-

coefficient flag from the encoded data of the bitstream,
or

inferring the value for the significant-coefficient flag.

8. A method of decoding a bitstream of encoded video by
reconstructing significant-coefficient flags for a transform
unit, the transform unit comprising a sequence of blocks, the
bitstream including sets of significant-coefficient flags, each
set corresponding to a respective block, the bitstream
sequencing the sets according to the order of their corre-
sponding blocks, the bitstream encoding the significant-co-
efficient flags of each set in a scan order, the method com-
prising:

for each set of significant-coefficient flags, decoding that

set in the scan order, wherein the scan order is a modi-
fication of a block-based diagonal scan, modified to
exclude a bottom-right-corner position within the block
corresponding to the set and an upper-left-corner posi-
tion within that block and modified to include an upper-
left-corner location in a previous block and a bottom-
right-corner location in a next block.

9. The method of claim 8, wherein decoding of a signifi-
cant-coefficient flag comprises determining a context for the
significant-coefficient flag.



US 9,172,962 B2

27

10. The method of claim 8, wherein the blocks are 4x4 and
wherein each set includes fourteen significant-coefficient
flags from its corresponding block and includes a significant-
coefficient flag from the upper-left location in the previous
block and includes a significant-coefficient flag from the bot-
tom-right location in the next block.

11. The method of claim 8, wherein the previous block is
the immediately preceding block in the sequence, and
wherein the next block is the immediately following block in
the sequence.

12. A decoder for decoding a bitstream of encoded data to
reconstruct significant-coefficient flags for a transform unit,
the transform unit comprising a sequence of blocks, the bit-
stream including sets of significant-coefficient flags, each set
corresponding to a respective block, the decoder comprising:

processing circuitry to, for each set of significant-coeffi-

cient flags,
decode that set in a scan order, wherein the scan order is
a diagonal scan within its respective block modified
SO as to
decode a significant-coefficient flag in the bottom-
right-corner position within the respective block
corresponding to the set, prior to decoding at least
two significant-coefficient flags of a previous set in
the sequence, and
decode a significant-coefficient flag in the upper-left-
corner position within that respective block, after
decoding at least two significant-coefficient flags
of a subsequent set in the sequence.

13. The decoder claimed in claim 12, wherein the process-
ing circuitry is to decode that set in the scan order by

decoding all the significant-coefficient flags in the set

except significant-coefficient flags in the three last posi-
tions located in the upper-left corner in the block-based
diagonal scan;

decoding a significant-coefficient flag in the lower-right

position of the subsequent set; and

decoding significant-coefficient flags in a third last posi-

tion and a second last position in the block-based diago-
nal scan of the set.

14. The decoder claimed in claim 13, wherein the process-
ing circuitry is to then decode significant-coefficient flags in
a second position and a third position in the block-based
diagonal scan of the subsequent set, and to decode the sig-
nificant-coefficient flag in the upper-right position in the set.

15. The decoder claimed in claim 12, wherein that subse-
quent set comprises the next set in the sequence for which an
associated significant-coefficient-group flag is equal to one.

16. The decoder claimed in claim 12, wherein the process-
ing circuitry is to decode a significant-coefficient flag by
determining a context for the significant-coefficient flag.

17. The decoder claimed in claim 16, wherein the process-
ing circuitry is to decode the significant-coefficient flag by:

binary arithmetically decoding a value for the significant-

coefficient flag based on the determined context;

and wherein the decoding of the significant-coefficient flag

in the bottom-right position within the respective block
corresponding to the set comprises determining a con-
text for the significant-coefficient flag in the bottom-
right position within that respective block prior to deter-
mining a respective context for the at least two
significant-coefficient flags of the previous set,

and wherein the decoding of a significant-coefficient flag in

the upper-left position within that respective block com-
prises determining a context for the significant-coeffi-
cient flag in the upper-left position within that respective
block after determining a respective context for the at
least two significant-coefficient flags of the subsequent
set.

10

15

20

25

30

35

40

45

50

55

60

28

18. The decoder claimed in claim 12, wherein the process-
ing circuitry is to decode a significant-coefficient flag by
determining a context for the significant-coefficient flag, and
either

binary arithmetically decoding a value for the significant-

coefficient flag from the encoded data of the bitstream,
or

inferring the value for the significant-coefficient flag.

19. A decoder for decoding a bitstream of encoded data to
reconstruct significant-coefficient flags for a transform unit,
the transform unit comprising a sequence of blocks, the bit-
stream including sets of significant-coefficient flags, each set
corresponding to a respective block, the bitstream sequencing
the sets according to the order of their corresponding blocks,
the bitstream encoding the significant-coefficient flags of
each set in a scan order, the decoder comprising:

processing circuitry to, for each set of significant-coeffi-

cient flags,

decode that set in the scan order, wherein the scan order
is a modification of a block-based diagonal scan,
modified to exclude a bottom-right-corner position
within the block corresponding to the set and an
upper-left-corner position within that block and
modified to include an upper-left-corner location in a
previous block and a bottom-right-corner location in a
next block.

20. A non-transitory processor-readable medium storing
processor-executable instructions which, when executed,
configures one or more processors to reconstruct significant-
coefficient flags for a transform unit, the transform unit com-
prising a sequence of blocks, the bitstream including sets of
significant-coefficient flags, each set corresponding to a
respective block, wherein the instructions, when executed
cause the processor to:

for each set of significant-coefficient flags, decode that set

in a scan order, wherein the scan order is a diagonal scan

within its respective block modified so as to

decode a significant-coefficient flag in the bottom-right-
corner position within the respective block corre-
sponding to the set, prior to decoding at least two
significant-coefficient flags of a previous set in the
sequence, and

decode a significant-coefficient flag in the upper-left-
corner position within that respective block, after
decoding at least two significant-coefficient flags of a
subsequent set in the sequence.

21. A non-transitory processor-readable medium storing
processor-executable instructions which, when executed,
configures one or more processors to reconstruct significant-
coefficient flags for a transform unit, the transform unit com-
prising a sequence of blocks, the bitstream including sets of
significant-coefficient flags, each set corresponding to a
respective block, the bitstream sequencing the sets according
to the order of their corresponding blocks, the bitstream
encoding the significant-coefficient flags of each set in a scan
order, wherein when executed the instructions cause the pro-
cessors to

for each set of significant-coefficient flags, decode that set

in the scan order, wherein the scan order is a modifica-
tion of a block-based diagonal scan, modified to exclude
a bottom-right-corner position within the block corre-
sponding to the set and an upper-left-corner position
within that block and modified to include an upper-left-
corner location in a previous block and a bottom-right-
corner location in a next block.

#* #* #* #* #*



